

Acids and Bases Chapter 15

Acids

Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain citric acid.

React with certain metals to produce hydrogen gas.
React with carbonates and bicarbonates to produce carbon dioxide gas

Bases

Have a bitter taste.
Feel slippery. Many soaps contain bases.

A Brønsted acid is a proton donor A Brønsted base is a proton acceptor

$\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$	\rightleftharpoons	$\mathrm{NH}_{4}^{+}(a q)$	$+\mathrm{OH}^{-}(a q)$		
base	acid	\rightleftarrows	acid		
base	acid		conjugate acid		base
:---:					
conjugate					
base					

Acid-Base Properties of Water

$$
\mathrm{H}_{2} \mathrm{O}\left(n \rightleftarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(a q)\right.
$$

autoionization of water

The Ion Product of Water

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O}(1) \rightleftarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad K_{c}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]} \quad\left[\mathrm{H}_{2} \mathrm{O}\right]=\text { constant } \\
K_{d}\left[\mathrm{H}_{2} \mathrm{O}\right]=K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
\end{gathered}
$$

The ion-product constant $\left(\boldsymbol{K}_{\boldsymbol{w}}\right)$ is the product of the molar concentrations of H^{+}and OH^{-}ions at a particular temperature.

Solution Is

$$
\begin{gathered}
\mathrm{At} 25^{\circ} \mathrm{C} \\
K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}
\end{gathered}
$$

$$
\begin{array}{ll}
{\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]} & \text {neutral } \\
{\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]} & \\
\text {acidic } \\
{\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]} & \text {basic }
\end{array}
$$

What is the concentration of OH^{-}ions in a HCl solution whose hydrogen ion concentration is 1.3 M ?

$$
K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}
$$

$$
\left[\mathrm{H}^{+}\right]=1.3 \mathrm{M}
$$

$$
\left[\mathrm{OH}^{-}\right]=\frac{K_{w}}{\left[\mathrm{H}^{+}\right]}=\frac{1 \times 10^{-14}}{1.3}=7.7 \times 10^{-15} \mathrm{M}
$$

pH - A Measure of Acidity

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

Solution Is

neutral acidic basic
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{H}^{+}\right]<1 \times 10^{-7}$
$\mathrm{pH}>7$

$$
\mathrm{pH} \uparrow \quad\left[\mathrm{H}^{+}\right]
$$

TABLE 15.1

The pHs of Some Common Fluids

Sample	pH Value
Gastric juice in	$1.0-2.0$
the stomach	
Lemon juice	2.4
Vinegar	3.0
Grapefruit juice	3.2
Orange juice	3.5
Urine	$4.8-7.5$
Water exposed	5.5
to air*	
Saliva	$6.4-6.9$
Milk	6.5
Pure water	7.0
Blood	$7.35-7.45$
Tears	7.4
Milk of magnesia	10.6
Household	11.5
ammonia	

Other important relationships

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]
$$

$\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=K_{w}=1.0 \times 10^{-14}$
$-\log \left[\mathrm{H}^{+}\right]-\log \left[\mathrm{OH}^{-}\right]=14.00$

$$
\mathrm{pH}+\mathrm{pOH}=14.00
$$

pH Meter

The pH of rainwater collected in a certain region of the northeastern United States on a particular day was 4.82. What is the H^{+}ion concentration of the rainwater?

$$
\begin{gathered}
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
{\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-4.82}=1.5 \times 10^{-5} \mathrm{M}}
\end{gathered}
$$

The OH^{-}ion concentration of a blood sample is $2.5 \times 10^{-7} \mathrm{M}$. What is the pH of the blood?

$$
\begin{gathered}
\mathrm{pH}+\mathrm{pOH}=14.00 \\
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(2.5 \times 10^{-7}\right)=6.60 \\
\mathrm{pH}=14.00-\mathrm{pOH}=14.00-6.60=7.40
\end{gathered}
$$

Strong Electrolyte - 100\% dissociation

$$
\mathrm{NaCl}(s) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

Weak Electrolyte - not completely dissociated

$$
\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})
$$

Strong Acids are strong electrolytes

$$
\begin{aligned}
& \mathrm{HCl}(a q)+\mathrm{H}_{2} \mathrm{O}\left(n \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{Cl}^{-}(a q)\right. \\
& \mathrm{HNO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(\eta) \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q) \\
& \mathrm{HClO}_{4}(a q)+\mathrm{H}_{2} \mathrm{O}\left(\eta \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{ClO}_{4}^{-}(a q)\right. \\
& \mathrm{H}_{2} \mathrm{SO}_{4}(a q)+\mathrm{H}_{2} \mathrm{O}_{(1)} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{HSO}_{4}^{-}(a q)
\end{aligned}
$$

Weak Acids are weak electrolytes

$$
\begin{aligned}
& \mathrm{HF}(a q)+\mathrm{H}_{2} \mathrm{O}\left(\Lambda \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{F}^{-}(a q)\right. \\
& \mathrm{HNO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}\left(n \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{NO}_{2}^{-}(a q)\right. \\
& \mathrm{HSO}_{4}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}\left(\Lambda \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{SO}_{4}^{2-}(a q)\right. \\
& \mathrm{H}_{2} \mathrm{O}(n)+\mathrm{H}_{2} \mathrm{O}_{(1)} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{OH}^{-}(a q)
\end{aligned}
$$

Strong Bases are strong electrolytes
$\mathrm{NaOH}(s) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q)$
$\mathrm{KOH}(s) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{K}^{+}(a q)+\mathrm{OH}^{-}(a q)$
$\mathrm{Ba}(\mathrm{OH})_{2}(s) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Ba}^{2+}(a q)+2 \mathrm{OH}^{-}(a q)$

Weak Bases are weak electrolytes

$$
\begin{aligned}
& \mathrm{F}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(1) \rightleftarrows \mathrm{OH}^{-}(a q)+\mathrm{HF}(a q) \\
& \mathrm{NO}_{2}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}\left(n \rightleftarrows \mathrm{OH}^{-}(a q)+\mathrm{HNO}_{2}(a q)\right.
\end{aligned}
$$

Conjugate acid-base pairs:

- The conjugate base of a strong acid has no measurable strength.
- $\mathrm{H}_{3} \mathrm{O}^{+}$is the strongest acid that can exist in aqueous solution.
- The OH^{-}ion is the strongest base that can exist in aqeous solution.

TABLE 15.2 Relative Strengths of Conjugate Acid-Base Pairs

Acid

Conjugate Base
ClO_{4}^{-}(perchlorate ion)
I^{-}(iodide ion)
Br^{-}(bromide ion)
Cl^{-}(chloride ion)
HSO_{4}^{-}(hydrogen sulfate ion)
NO_{3}^{-}(nitrate ion)
$\mathrm{H}_{2} \mathrm{O}$ (water)
SO_{4}^{2-} (sulfate ion)
F^{-}(fluoride ion)
NO_{2}^{-}(nitrite ion)
HCOO^{-}(formate ion)
$\mathrm{CH}_{3} \mathrm{COO}^{-}$(acetate ion)
NH_{3} (ammonia)
CN^{-}(cyanide ion)
OH^{-}(hydroxide ion)
NH_{2}^{-}(amide ion)

Strong Acid (HCl)

Weak Acid (HF)

- $\mathrm{H}_{2} \mathrm{O}$
g) $\mathrm{H}_{3} \mathrm{O}^{+}$

What is the pH of a $2 \times 10^{-3} \mathrm{M} \mathrm{HNO}_{3}$ solution?
HNO_{3} is a strong acid - 100\% dissociation.
Start 0.002 M $0.0 \mathrm{M} \quad 0.0 \mathrm{M}$
$\mathrm{HNO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(\Omega) \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q)$
End $0.0 \mathrm{M} \quad 0.002 \mathrm{M} \quad 0.002 \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log (0.002)=2.7$
What is the pH of a $1.8 \times 10^{-2} \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution?
$\mathrm{Ba}(\mathrm{OH})_{2}$ is a strong base -100% dissociation.
Start 0.018 M
$0.0 \mathrm{M} \quad 0.0 \mathrm{M}$
$\mathrm{Ba}(\mathrm{OH})_{2}(s) \longrightarrow \mathrm{Ba}^{2+}(a q)+2 \mathrm{OH}^{-}(a q)$
End $\quad 0.0 \mathrm{M} \quad 0.018 \mathrm{M} \quad 0.036 \mathrm{M}$

$$
\mathrm{pH}=14.00-\mathrm{pOH}=14.00+\log (0.036)=12.6
$$

Weak Acids (HA) and Acid Ionization Constants

$$
\begin{aligned}
\mathrm{HA}(a q)+\mathrm{H}_{2} \mathrm{O}(1) & \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{-}(\mathrm{aq}) \\
\mathrm{HA}(a q) & \rightleftarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{A}^{-}(a q) \\
K_{a} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{aligned}
$$

K_{a} is the acid ionization constant

$$
K_{a} \uparrow \quad \begin{gathered}
\text { weak acid } \\
\text { strength }
\end{gathered} \uparrow
$$

TABLE 15.3 Ionization Constants of Some Weak Acids and Their Conjugate Bases at $25^{\circ} \mathrm{C}$

What is the pH of a 0.5 MHF solution (at $25^{\circ} \mathrm{C}$)?
$\mathrm{HF}(a q) \rightleftarrows \mathrm{H}^{+}(a q)+\mathrm{F}^{-}(a q) \quad K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]}=7.1 \times 10^{-4}$
$\mathrm{HF}(a q) \rightleftarrows \mathrm{H}^{+}(a q)+\mathrm{F}^{-}(a q)$
Initial (M)
0.50
$0.00 \quad 0.00$
Change (M)
Equilibrium (M) $0.50-x$

$$
K_{a}=\frac{x^{2}}{0.50-x}=7.1 \times 10^{-4} \quad K_{a} \ll 1 \quad 0.50-x \approx 0.50
$$

$$
K_{a} \approx \frac{x^{2}}{0.50}=7.1 \times 10^{-4} \quad x^{2}=3.55 \times 10^{-4} \quad x=0.019 \mathrm{M}
$$

$\left[\mathrm{H}^{+}\right]=[\mathrm{F}]=0.019 \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=1.72$
$[\mathrm{HF}]=0.50-x=0.48 \mathrm{M}$

When can I use the approximation?

$$
K_{a} \ll 1 \quad 0.50-x \approx 0.50
$$

When x is less than 5% of the value from which it is subtracted.

$$
x=0.019 \quad \frac{0.019 M}{0.50 M} \times 100 \%=3.8 \%
$$

Less than 5\%
Approximation ok.

What is the pH of a 0.05 M HF solution (at $25^{\circ} \mathrm{C}$)?

$$
K_{a} \approx \frac{x^{2}}{0.05}=7.1 \times 10^{-4} \quad x=0.006 \mathrm{M}
$$

$$
\frac{0.006 M}{0.05 M} \times 100 \%=12 \%
$$

More than 5\%
Approximation not ok.
Must solve for x exactly using quadratic equation or method of successive approximations.

Solving weak acid ionization problems:

1. Identify the major species that can affect the pH .

- In most cases, you can ignore the autoionization of water.
- Ignore $\left[\mathrm{OH}^{-}\right]$because it is determined by $\left[\mathrm{H}^{+}\right]$.

2. Use ICE to express the equilibrium concentrations in terms of single unknown x.
3. Write K_{a} in terms of equilibrium concentrations. Solve for x by the approximation method. If approximation is not valid, solve for x exactly.
4. Calculate concentrations of all species and/or pH of the solution.

What is the pH of a 0.122 M monoprotic acid whose K_{a} is 5.7×10^{-4} ?

Initial (M)

$$
\mathrm{HA}(a q) \rightleftarrows \mathrm{H}^{+}(a q)+\mathrm{A}^{-}(a q)
$$

$$
\begin{array}{lll}
0.122 & 0.00 & 0.00
\end{array}
$$

Change (M)
$-x$
$+X \quad+X$
Equilibrium (M) 0.122-x $x \quad x$

$$
\begin{aligned}
& K_{a}=\frac{x^{2}}{0.122-x}=5.7 \times 10^{-4} \quad K_{a} \ll 1 \quad 0.122-x \approx 0.122 \\
& K_{a} \approx \frac{x^{2}}{0.122}=5.7 \times 10^{-4} \quad x^{2}=6.95 \times 10^{-5} \quad x=0.0083 \mathrm{M}
\end{aligned}
$$

$$
\frac{0.0083 M}{0.122 M} \times 100 \%=6.8 \%
$$

More than 5\%
Approximation not ok.

$$
K_{a}=\frac{x^{2}}{0.122-x}=5.7 \times 10^{-4} \quad x^{2}+0.00057 x-6.95 \times 10^{-5}=0
$$

$$
\begin{array}{rl}
a x^{2}+b x+c=0 & x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x=0.0081 & x=-0.0081
\end{array}
$$

$$
\begin{array}{ccc}
\mathrm{HA}(a q) & \rightleftarrows & \mathrm{H}^{+}(a q)+\mathrm{A}^{-}(a q) \\
0.122 & 0.00 & 0.00 \\
-x & +x & +x
\end{array}
$$

Initial (M)
Change (M)
Equilibrium (M) 0.122-x $x \quad x$

$$
\left[\mathrm{H}^{+}\right]=x=0.0081 \mathrm{M} \quad \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=2.09
$$

percent ionization $=\frac{\text { lonized acid concentration at equilibrium }}{\text { Initial concentration of acid }} \times 100 \%$
For a monoprotic acid HA
Percent ionization $=\frac{\left[\mathrm{H}^{+}\right]}{[\mathrm{HA}]_{0}} \times 100 \% \quad[\mathrm{HA}]_{0}=$ initial concentration

Initial concentration of acid

Weak Bases and Base Ionization Constants

$$
\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(\eta) \rightleftarrows \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

$$
K_{b}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}
$$

K_{b} is the base ionization constant

$$
K_{b} \uparrow \quad \begin{gathered}
\text { weak base } \\
\text { strength }
\end{gathered}
$$

Solve weak base problems like weak acids except solve for [$\mathrm{OH}-]$ instead of $\left[\mathrm{H}^{+}\right]$.

Ionization Constants of Some Weak Bases and Their Conjugate Acids at $25^{\circ} \mathrm{C}$

Name of Base	Formula	Structure	$K_{\text {b }}{ }^{*}$	Conjugate Acid	$K_{\text {a }}$
Ethylamine	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$		5.6×10^{-4}	$\mathrm{C}_{2} \mathrm{H}_{5}{\stackrel{+}{\mathrm{N}} \mathrm{H}_{3}}$	1.8×10^{-11}
Methylamine	$\mathrm{CH}_{3} \mathrm{NH}_{2}$		4.4×10^{-4}	$\mathrm{CH}_{3} \stackrel{+}{\mathrm{N}} \mathrm{H}_{3}$	2.3×10^{-11}
Ammonia	NH_{3}		1.8×10^{-5}	NH_{4}^{+}	5.6×10^{-10}
Pyridine	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$		1.7×10^{-9}	$\mathrm{C}_{5} \mathrm{H}_{5} \stackrel{+}{\mathrm{N}} \mathrm{H}$	5.9×10^{-6}
Aniline	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$		3.8×10^{-10}	$\mathrm{C}_{6} \mathrm{H}_{5}{\stackrel{+}{\mathrm{N}} \mathrm{H}_{3}}$	2.6×10^{-5}
Caffeine	$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$		5.3×10^{-14}	$\mathrm{C}_{8} \mathrm{H}_{11} \stackrel{+}{\mathrm{N}}_{4} \mathrm{O}_{2}$	0.19
Urea	$\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$		1.5×10^{-14}	$\mathrm{H}_{2} \mathrm{NCO}^{+} \mathrm{H}_{3}$	0.67

[^0]
Ionization Constants of Conjugate Acid-Base Pairs

$$
\begin{aligned}
& H_{A}(a q) \rightleftarrows \mathrm{H}^{+}(a q)+\not \mathcal{X}^{(a q)} \quad K_{a} \\
& A^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(1) \rightleftarrows \mathrm{OH}^{-}(a q)+\mathrm{HA}^{(a q)} \quad K_{b} \\
& \mathrm{H}_{2} \mathrm{O}(\mathrm{n}) \rightleftarrows \mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \quad K_{w} \\
& K_{a} K_{b}=K_{w}
\end{aligned}
$$

Weak Acid and Its Conjugate Base

$$
K_{a}=\frac{K_{w}}{K_{b}} \quad K_{b}=\frac{K_{w}}{K_{a}}
$$

Diprotic and Triprotic Acids

- May yield more than one hydrogen ion per molecule.
- Ionize in a stepwise manner; that is, they lose one proton at a time.
- An ionization constant expression can be written for each ionization stage.
- Consequently, two or more equilibrium constant expressions must often be used to calculate the concentrations of species in the acid solution.

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{CO}_{3}(a q) & \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{HCO}_{3}^{-}(a q)
\end{aligned} K_{\mathrm{a}_{1}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}
$$

\begin{tabular}{|c|c|c|c|c|c|}
\hline Name of Acid \& Formula \& Structure \& $K_{\text {a }}$ \& Conjugate Base \& $K_{\text {b }}$

\hline Sulfuric acid \& $\mathrm{H}_{2} \mathrm{SO}_{4}$ \& \& very large \& HSO_{4}^{-} \& very small

\hline Hydrogen sulfate ion \& HSO_{4}^{-} \& \& 1.3×10^{-2} \& SO_{4}^{2-} \& 7.7×10^{-13}

\hline Oxalic acid
Hydrogen oxalate ion \& $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$

$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$ \&

 \& $$
6.5 \times 10^{-2}
$$

$$
6.1 \times 10^{-5}
$$ \& \[

$$
\begin{aligned}
& \mathrm{HC}_{2} \mathrm{O}_{4}^{-} \\
& \mathrm{C}_{2} \mathrm{O}_{4}^{2-}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.5 \times 10^{-13} \\
& 1.6 \times 10^{-10}
\end{aligned}
$$
\]

\hline Sulfurous acid*
Hydrogen sulfite ion \& $\mathrm{H}_{2} \mathrm{SO}_{3}$

HSO_{3}^{-} \&

 \& $$
1.3 \times 10^{-2}
$$

$$
6.3 \times 10^{-8}
$$ \& \[

$$
\begin{aligned}
& \mathrm{HSO}_{3}^{-} \\
& \mathrm{SO}_{3}^{2-}
\end{aligned}
$$

\] \& \[

7.7 \times 10^{-13}
\]

$$
1.6 \times 10^{-7}
$$

\hline Carbonic acid
Hydrogen carbonate ion \& $\mathrm{H}_{2} \mathrm{CO}_{3}$

HCO_{3}^{-} \& \& \[
$$
\begin{aligned}
& 4.2 \times 10^{-7} \\
& 4.8 \times 10^{-11}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{HCO}_{3}^{-} \\
& \mathrm{CO}_{3}^{2-}
\end{aligned}
$$

\] \& \[

2.4 \times 10^{-8}
\]

$$
2.1 \times 10^{-4}
$$

\hline Hydrosulfuric acid \& $\mathrm{H}_{2} \mathrm{~S}$ \& H-S-H \& 9.5×10^{-8} \& HS^{-} \& 1.1×10^{-7}

\hline Hydrogen sulfide ion ${ }^{*}$ \& HS^{-} \& $\mathrm{H}-\mathrm{S}^{-}$ \& 1×10^{-19} \& S^{2-} \& 1×10^{5}

\hline Phosphoric acid \& $\mathrm{H}_{3} \mathrm{PO}_{4}$ \& \& 7.5×10^{-3} \& $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$ \& 1.3×10^{-12}

\hline Dihydrogen phosphate ion \& $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$ \& \& 6.2×10^{-8} \& HPO_{4}^{2-} \& 1.6×10^{-7}

\hline Hydrogen phosphate ion \& HPO_{4}^{2-} \& \& 4.8×10^{-13} \& PO_{4}^{3-} \& 2.1×10^{-2}

\hline
\end{tabular}

Molecular Structure and Acid Strength

$$
\begin{gathered}
\text { The } \\
\begin{array}{c}
\text { The } \\
\text { stronger } \\
\text { the bond }
\end{array}
\end{gathered} \begin{gathered}
\text { Theaker } \\
\text { the acid }
\end{gathered}
$$

$$
\mathrm{HF} \ll \mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}
$$

Bond	Bond Enthalpy (kJ/mol)	Acid Strength
$\mathrm{H}-\mathrm{F}$	568.2	weak
$\mathrm{H}-\mathrm{Cl}$	431.9	strong
$\mathrm{H}-\mathrm{Br}$	366.1	strong
$\mathrm{H}-\mathrm{I}$	298.3	strong

Molecular Structure and Oxoacid Strength

$$
\lambda z-\mathrm{O}^{\delta^{-}}-\mathrm{H}^{+} \longrightarrow \frac{\lambda}{\mathrm{H}} \mathrm{z}-\mathrm{O}^{-}+\mathrm{H}^{+}
$$

The O-H bond will be more polar and easier to break if:

- Z is very electronegative or
- Z is in a high oxidation state

$\mathrm{H}-\mathrm{O}-\mathrm{N}=\mathrm{O}$
Nitrous acid

Phosphoric acid

Sulfuric acid

Molecular Structure and Oxoacid Strength

1. Oxoacids having different central atoms (Z) that are from the same group and that have the same oxidation number.

Acid strength increases with increasing electronegativity of Z

Cl is more electronegative than Br
$\mathrm{HClO}_{3}>\mathrm{HBrO}_{3}$

acidity
increases

Molecular Structure and Acid Strength

2. Oxoacids having the same central atom (Z) but different numbers of attached groups.

Acid strength increases as the oxidation number of Z increases.

$$
\mathrm{HClO}_{4}>\mathrm{HClO}_{3}>\mathrm{HClO}_{2}>\mathrm{HClO}
$$

Acid-Base Properties of Salts

Neutral Solutions:

Salts containing an alkali metal or alkaline earth metal ion (except Be^{2+}) and the conjugate base of a strong acid (e.g. $\mathrm{Cl}^{-}, \mathrm{Br}$, and NO_{3}^{-}).

$$
\mathrm{NaCl}(s) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

Basic Solutions:

Salts derived from a strong base and a weak acid.

$$
\begin{gathered}
\mathrm{NaCH}_{3} \mathrm{COOH}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq}) \\
\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\eta) \rightleftarrows \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
\end{gathered}
$$

Acid-Base Properties of Salts

Acid Solutions:

Salts derived from a strong acid and a weak base.

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{Cl}(s) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{NH}_{4}^{+}(a q)+\mathrm{Cl}^{-}(a q) \\
& \mathrm{NH}_{4}^{+}(a q) \rightleftarrows \mathrm{NH}_{3}(a q)+\mathrm{H}^{+}(a q)
\end{aligned}
$$

Salts with small, highly charged metal cations (e.g. Al^{3+}, Cr^{3+}, and Be^{2+}) and the conjugate base of a strong acid.

$$
\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}(a q) \rightleftarrows \mathrm{Al}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}^{2+}(a q)+\mathrm{H}^{+}(a q)
$$

Acid Hydrolysis of Al^{3+}

Acid-Base Properties of Salts

Solutions in which both the cation and the anion hydrolyze:

- K_{b} for the anion $>K_{a}$ for the cation, solution will be basic
- K_{b} for the anion $<K_{a}$ for the cation, solution will be acidic
- K_{b} for the anion $\approx K_{a}$ for the cation, solution will be neutral

TABLE 15.7 Acid-Base Properties of Salts

Type of Salt	Examples	Ions That Undergo Hydrolysis	pH of Solution
Cation from strong base; anion from strong acid	$\mathrm{NaCl}, \mathrm{KI}, \mathrm{KNO}_{3}, \mathrm{RbBr}, \mathrm{BaCl}_{2}$	None	≈ 7
Cation from strong base; anion from weak acid	$\mathrm{CH}_{3} \mathrm{COONa}, \mathrm{KNO}_{2}$	Anion	>7
Cation from weak base; anion from strong acid	$\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NH}_{4} \mathrm{NO}_{3}$	Cation	<7
Cation from weak base; anion from weak acid	$\mathrm{NH}_{4} \mathrm{NO}_{2}, \mathrm{CH}_{3} \mathrm{COONH}_{4}, \mathrm{NH}_{4} \mathrm{CN}$	Anion and cation	<7 if $K_{\mathrm{b}}<K_{\mathrm{a}}$
		≈ 7 if $K_{\mathrm{b}} \approx K_{\mathrm{a}}$	
Small, highly charged cation; anion from strong acid	$\mathrm{AlCl}_{3}, \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$	Hydrated cation	<7

Oxides of the Representative Elements In Their Hiahest Oxidation States

$\begin{gathered} 1 \\ 1 \mathrm{~A} \end{gathered}$				Basic oxide													$\begin{array}{r} 18 \\ 8 \mathrm{~A} \end{array}$
	$\begin{gathered} 2 \\ 2 \mathrm{~A} \end{gathered}$			Acidic oxide								$\begin{array}{r} 13 \\ 3 \mathrm{~A} \end{array}$	$\begin{array}{r} 14 \\ 4 \mathrm{~A} \end{array}$	$\begin{gathered} 15 \\ 5 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 16 \\ & 6 \mathrm{~A} \end{aligned}$	$\begin{array}{r} 17 \\ 7 \mathrm{~A} \end{array}$	
$\mathrm{Li}_{2} \mathrm{O}$	BeO			Amphoteric oxide								$\mathrm{B}_{2} \mathrm{O}_{3}$	CO_{2}	$\mathrm{N}_{2} \mathrm{O}_{5}$		OF_{2}	
$\mathrm{Na}_{2} \mathrm{O}$	MgO	$\begin{gathered} 3 \\ 3 \mathrm{~B} \end{gathered}$	$\begin{gathered} 4 \\ 4 B \end{gathered}$	5 ${ }_{\text {5 }}$	6 $6 B$	7 78	$\square 8 \mathrm{~B} \longrightarrow$			11	12 2B	$\mathrm{Al}_{2} \mathrm{O}_{3}$	SiO_{2}	$\mathrm{P}_{4} \mathrm{O}_{10}$	SO_{3}	$\mathrm{Cl}_{2} \mathrm{O}_{7}$	
$\mathrm{K}_{2} \mathrm{O}$	CaO											$\mathrm{Ga}_{2} \mathrm{O}_{3}$	GeO_{2}	$\mathrm{As}_{2} \mathrm{O}_{5}$	SeO_{3}	$\mathrm{Br}_{2} \mathrm{O}_{7}$	
$\mathrm{Rb}_{2} \mathrm{O}$	SrO											$\mathrm{In}_{2} \mathrm{O}_{3}$	SnO_{2}	$\mathrm{Sb}_{2} \mathrm{O}_{5}$	TeO_{3}	$\mathbf{I}_{2} \mathrm{O}_{7}$	
$\mathrm{Cs}_{2} \mathrm{O}$	BaO											$\mathrm{Tl}_{2} \mathrm{O}_{3}$	PbO_{2}	$\mathrm{Bi}_{2} \mathrm{O}_{5}$	PoO_{3}	$\mathrm{At}_{2} \mathrm{O}_{7}$	

$$
\begin{aligned}
\mathrm{Na}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\Lambda & \longrightarrow 2 \mathrm{NaOH}_{(a q)} \\
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\Lambda & \rightleftarrows \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \\
\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\eta & \rightleftarrows 2 \mathrm{HNO}_{3}(\mathrm{aq})
\end{aligned}
$$

Definition of An Acid

Arrhenius acid is a substance that produces $\mathrm{H}^{+}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$in water
A Bronsted acid is a proton donor
A Lewis acid is a substance that can accept a pair of electrons
A Lewis base is a substance that can donate a pair of electrons

acid base

Lewis Acids and Bases

No protons donated or accepted!

Chemistry In Action: Antacids and the Stomach pH Balance

Some Common Commercial Antacid Preparations

[^0]: *The nitrogen atom with the lone pair accounts for each compound's basicity. In the case of urea, K_{b} can be associated with either nitrogen atom.

