

Acids and Bases Chapter 15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Acids

Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain citric acid.

React with certain metals to produce hydrogen gas.

React with carbonates and bicarbonates to produce carbon dioxide gas

Bases

Have a bitter taste.

Feel slippery. Many soaps contain bases.

A Brønsted acid is a proton donor A Brønsted base is a proton acceptor

Acid-Base Properties of Water

 $H_2O(l) \longrightarrow H^+(aq) + OH^-(aq)$

autoionization of water

The Ion Product of Water

 $H_{2}O(I) \longrightarrow H^{+}(aq) + OH^{-}(aq) \quad K_{c} = \frac{[H^{+}][OH^{-}]}{[H_{2}O]} \quad [H_{2}O] = \text{constant}$ $K_{c}[H_{2}O] = K_{w} = [H^{+}][OH^{-}]$

The *ion-product constant* (K_w) is the product of the molar concentrations of H⁺ and OH⁻ ions at a particular temperature.

	[H+] = [OH⁻]	neutral
At $25^{\circ}C$ $K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$	[H⁺] > [OH⁻]	acidic
	[H⁺] < [OH⁻]	basic

What is the concentration of OH^- ions in a HCI solution whose hydrogen ion concentration is 1.3 *M*?

$$K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$$

[H⁺] = 1.3 *M*

$$[OH^{-}] = \frac{K_w}{[H^{+}]} = \frac{1 \times 10^{-14}}{1.3} = 7.7 \times 10^{-15} M$$

pH – A Measure of Acidity

$$pH = -log [H^+]$$

Solution Is		<u>At 25°C</u>	
neutral	[H⁺] = [OH⁻]	$[H^+] = 1 \times 10^{-7}$	pH = 7
acidic	[H⁺] > [OH⁻]	[H ⁺] > 1 x 10 ⁻⁷	pH < 7
basic	[H⁺] < [OH⁻]	[H⁺] < 1 x 10 ⁻⁷	pH > 7

TABLE 15.1

The pHs of Some Common Fluids

Sample	pH Value
Gastric juice in	1.0-2.0
the stomach	
Lemon juice	2.4
Vinegar	3.0
Grapefruit juice	3.2
Orange juice	3.5
Urine	4.8–7.5
Water exposed	5.5
to air*	
Saliva	6.4–6.9
Milk	6.5
Pure water	7.0
Blood	7.35–7.45
Tears	7.4
Milk of	10.6
magnesia	
Household	11.5
ammonia	

*Water exposed to air for a long period of time absorbs atmospheric CO_2 to form carbonic acid, H_2CO_3 .

Other important relationships $pOH = -log [OH^{-}]$ $[H^{+}][OH^{-}] = K_w = 1.0 \times 10^{-14}$ $-log [H^{+}] - log [OH^{-}] = 14.00$ pH + pOH = 14.00

pH Meter

The pH of rainwater collected in a certain region of the northeastern United States on a particular day was 4.82. What is the H⁺ ion concentration of the rainwater?

 $pH = -log [H^+]$ $[H^+] = 10^{-pH} = 10^{-4.82} = 1.5 \times 10^{-5} M$

The OH⁻ ion concentration of a blood sample is $2.5 \times 10^{-7} M$. What is the pH of the blood?

pH + pOH = 14.00 $pOH = -log [OH^{-}] = -log (2.5 \times 10^{-7}) = 6.60$ pH = 14.00 - pOH = 14.00 - 6.60 = 7.40 Strong Electrolyte – 100% dissociation NaCl (s) $\xrightarrow{H_2O}$ Na⁺ (aq) + Cl⁻ (aq)

Weak Electrolyte – not completely dissociated $CH_3COOH \longrightarrow CH_3COO^- (aq) + H^+ (aq)$

Strong Acids are strong electrolytes

 $\begin{aligned} &\text{HCl } (aq) + \text{H}_2\text{O} (l) \longrightarrow \text{H}_3\text{O}^+ (aq) + \text{Cl}^- (aq) \\ &\text{HNO}_3 (aq) + \text{H}_2\text{O} (l) \longrightarrow \text{H}_3\text{O}^+ (aq) + \text{NO}_3^- (aq) \\ &\text{HClO}_4 (aq) + \text{H}_2\text{O} (l) \longrightarrow \text{H}_3\text{O}^+ (aq) + \text{ClO}_4^- (aq) \\ &\text{H}_2\text{SO}_4 (aq) + \text{H}_2\text{O} (l) \longrightarrow \text{H}_3\text{O}^+ (aq) + \text{HSO}_4^- (aq) \end{aligned}$

Weak Acids are weak electrolytes

 $HF (aq) + H_2O (I) \bigoplus H_3O^+ (aq) + F^- (aq)$ $HNO_2 (aq) + H_2O (I) \bigoplus H_3O^+ (aq) + NO_2^- (aq)$ $HSO_4^- (aq) + H_2O (I) \bigoplus H_3O^+ (aq) + SO_4^{2-} (aq)$ $H_2O (I) + H_2O (I) \bigoplus H_3O^+ (aq) + OH^- (aq)$

Strong Bases are strong electrolytes

NaOH (s)
$$\xrightarrow{H_2O}$$
 Na⁺ (aq) + OH⁻ (aq)
KOH (s) $\xrightarrow{H_2O}$ K⁺ (aq) + OH⁻ (aq)
Ba(OH)₂ (s) $\xrightarrow{H_2O}$ Ba²⁺ (aq) + 2OH⁻ (aq)

Weak Bases are weak electrolytes

 $F^{-}(aq) + H_2O(l) + HF(aq)$

 $NO_2^-(aq) + H_2O(l) \longrightarrow OH^-(aq) + HNO_2(aq)$

Conjugate acid-base pairs:

- The conjugate base of a strong acid has no measurable strength.
- H₃O⁺ is the strongest acid that can exist in aqueous solution.
- The OH⁻ ion is the strongest base that can exist in aqeous solution.

		Acid	Conjugate Base	
		(HClO ₄ (perchloric acid)	ClO_4^- (perchlorate ion)	
	ids	HI (hydroiodic acid)	I ⁻ (iodide ion)	
	Strong acids	HBr (hydrobromic acid)	Br ⁻ (bromide ion)	
	ŝuoj	HCl (hydrochloric acid)	Cl ⁻ (chloride ion)	
	Sti	H ₂ SO ₄ (sulfuric acid)	HSO ₄ ⁻ (hydrogen sulfate ion)	S
ases	Acid strength increases acids	HNO ₃ (nitric acid)	NO_3^- (nitrate ion)	strength increases
lcre		H ₃ O ⁺ (hydronium ion)	H ₂ O (water)	JCre
th ir		$(HSO_4^- (hydrogen sulfate ion))$	SO_4^{2-} (sulfate ion)	th ii
engl		HF (hydrofluoric acid)	F ⁻ (fluoride ion)	engl
stre		HNO ₂ (nitrous acid)	NO_2^- (nitrite ion)	stre
Acid	cids	HCOOH (formic acid)	HCOO ⁻ (formate ion)	Base
\checkmark	ak a	CH ₃ COOH (acetic acid)	CH ₃ COO ⁻ (acetate ion)	В
	Acid Weak acids	NH ₄ ⁺ (ammonium ion)	NH ₃ (ammonia)	
		HCN (hydrocyanic acid)	CN ⁻ (cyanide ion)	
		H ₂ O (water)	OH ⁻ (hydroxide ion)	
		NH ₃ (ammonia)	NH_2^- (amide ion)	

TABLE 15.2Relative Strengths of Conjugate Acid-Base Pairs

Strong Acid (HCI)

Weak Acid (HF)

14

What is the pH of a 2 x 10^{-3} *M* HNO₃ solution?

 HNO_3 is a strong acid – 100% dissociation.

Start 0.002 M0.0 M0.0 M $HNO_3 (aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + NO_3^- (aq)$ End 0.0 M0.002 M0.002 M

 $pH = -log [H^+] = -log [H_3O^+] = -log(0.002) = 2.7$

What is the pH of a 1.8 x 10^{-2} M Ba(OH)₂ solution?

Ba(OH)₂ is a strong base – 100% dissociation. Start 0.018 M 0.0 M 0.0 MBa(OH)₂ (s) \longrightarrow Ba²⁺ (aq) + 2OH⁻ (aq) End 0.0 M 0.018 M 0.036 MpH = 14.00 – pOH = 14.00 + log(0.036) = 12.6 Weak Acids (HA) and Acid Ionization Constants

$$HA(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + A^-(aq)$$

$$HA(aq) \longrightarrow H^+(aq) + A^-(aq)$$

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

K_a is the *acid ionization constant*

$$K_a \uparrow$$
 weak acid strength

TABLE 15.3 Ioniza	ation Constant	ts of Some Weak Acids and	d Their Conjug	ate Bases at 25°C	
Name of Acid	Formula	Structure	K _a	Conjugate Base	${oldsymbol{\mathcal{K}}_{\mathrm{b}}}^{\dagger}$
Hydrofluoric acid	HF	H—F	7.1×10^{-4}	F ⁻	1.4×10^{-11}
Nitrous acid	HNO_2	O=N-O-H	4.5×10^{-4}	NO_2^-	2.2×10^{-11}
Acetylsalicylic acid (aspirin)	$C_9H_8O_4$	О Ш С—О—Н	3.0×10^{-4}	$C_9H_7O_4^-$	3.3×10^{-11}
Formio opid	ИСООН	U C C C C H ₃	1.7×10^{-4}	HCOO⁻	5.9×10^{-11}
Formic acid	НСООН	О ∥ Н—С—О—Н	1.7 × 10	нсоо	5.9 × 10
Ascorbic acid*	$C_6H_8O_6$	H-OOH	8.0×10^{-5}	$C_6H_7O_6^-$	1.3×10^{-10}
		H C C = 0			
Dengeis said	C ₆ H₅COOH	CH ₂ OH	6.5×10^{-5}		$1.5 imes 10^{-10}$
Benzoic acid	C ₆ H ₅ COOH	О Ш С—О—Н	0.5 × 10	C ₆ H₅COO [−]	1.5 × 10
Acetic acid	CH ₃ COOH	О ∥ СН ₃ —С—О—Н	1.8×10^{-5}	CH ₃ COO ⁻	5.6×10^{-10}
Hydrocyanic acid	HCN	H−C≡N	4.9×10^{-10}	CN^-	2.0×10^{-5}
Phenol	C ₆ H ₅ OH	О-Н	1.3×10^{-10}	$C_6H_5O^-$	7.7×10^{-5}

TABLE 15.3 Ionization Constants of Some Weak Acids and Their Conjugate Bases at 25°C

*For ascorbic acid it is the upper left hydroxyl group that is associated with this ionization constant. [†]The base ionization constant K_b is discussed in Section 15.6.

What is the pH of a 0.5 *M* HF solution (at 25°C)?

$$HF (aq) \rightleftharpoons H^{+} (aq) + F^{-} (aq) \qquad K_{a} = \frac{[H^{+}][F^{-}]}{[HF]} = 7.1 \times 10^{-4}$$

$$HF (aq) \rightleftharpoons H^{+} (aq) + F^{-} (aq)$$
Initial (M) 0.50 0.00 0.00
Change (M) -x +x +x +x
Equilibrium (M) 0.50 - x x x x
$$K_{a} = \frac{x^{2}}{0.50 - x} = 7.1 \times 10^{-4} \qquad K_{a} << 1 \quad 0.50 - x \approx 0.50$$

$$K_{a} \approx \frac{x^{2}}{0.50} = 7.1 \times 10^{-4} \qquad x^{2} = 3.55 \times 10^{-4} \qquad x = 0.019 M$$

$$[H^{+}] = [F^{-}] = 0.019 M \qquad pH = -log [H^{+}] = 1.72$$

$$[HF] = 0.50 - x = 0.48 M \qquad 18$$

When can I use the approximation?

$$K_a << 1 \quad 0.50 - x \approx 0.50$$

When x is less than 5% of the value from which it is subtracted.

$$x = 0.019$$
 $\frac{0.019 M}{0.50 M} \times 100\% = 3.8\%$ Less than 5% Approximation ok.

What is the pH of a 0.05 *M* HF solution (at 25°C)?

$$K_a \approx \frac{x^2}{0.05} = 7.1 \times 10^{-4}$$
 $x = 0.006 M$

 $\frac{0.006 M}{0.05 M} \times 100\% = 12\%$ More than 5% Approximation **not** ok.

Must solve for *x* exactly using quadratic equation or method of successive approximations.

Solving weak acid ionization problems:

- 1. Identify the major species that can affect the pH.
 - In most cases, you can ignore the autoionization of water.
 - Ignore [OH⁻] because it is determined by [H⁺].
- 2. Use ICE to express the equilibrium concentrations in terms of single unknown *x*.
- 3. Write K_a in terms of equilibrium concentrations. Solve for x by the approximation method. If approximation is not valid, solve for x exactly.
- 4. Calculate concentrations of all species and/or pH of the solution.

What is the pH of a 0.122 *M* monoprotic acid whose *K*_a is 5.7 x 10⁻⁴?

Approximation **not** ok.

$K_a = \frac{x^2}{0.122 - x}$	5.7 x 10 ⁻⁴	<i>x</i> ² + 0.000	57 <i>x</i> – 6.9	5 x 10 ⁻⁵ =	0
ax ² + b	x + c = 0	<i>X</i> = -	$\frac{-b \pm \sqrt{b^2}}{2a}$	4 <i>ac</i>	
	<i>x</i> = 0.0081	X = -	0.0081		
	HA (<i>aq</i>) ∓	➡ H+ (<i>aq</i>) -	+ A⁻ (<i>aq)</i>		
Initial (M)	0.122	0.00	0.00		
Change (<i>M</i>)	-X	+ <i>X</i>	+X		
Equilibrium (<i>M</i>)	0.122 - <i>x</i>	X	X		
				0.00	

 $[H^+] = x = 0.0081 M$ $pH = -log[H^+] = 2.09$

For a monoprotic acid HA

Percent ionization = $\frac{[H^+]}{[HA]_0} \times 100\%$ [HA]₀ = initial concentration

Weak Bases and Base Ionization Constants

$$NH_3(aq) + H_2O(l) \longrightarrow NH_4^+(aq) + OH^-(aq)$$

$$K_b = \frac{[\mathsf{NH}_4^+][\mathsf{OH}^-]}{[\mathsf{NH}_3]}$$

K_b is the *base ionization constant*

$$K_b$$
 t weak base t strength t

Solve weak base problems like weak acids *except* solve for [OH-] instead of [H⁺].

TABLE 15.4 10	nization Constan	ts of Some weak bases and	Their Conjugate	e Acids at 25°C	
Name of Base	Formula	Structure	К ь*	Conjugate Acid	Ka
Ethylamine	$C_2H_5NH_2$	CH_3 — CH_2 — N — H H	5.6×10^{-4}	$C_2H_5NH_3$	1.8×10^{-11}
Methylamine	CH ₃ NH ₂	$CH_3 - N - H$ H	4.4×10^{-4}	$CH_3 \overset{+}{N}H_3$	2.3×10^{-11}
Ammonia	NH ₃	 Н—N—Н Н	1.8×10^{-5}	NH_4^+	5.6×10^{-10}
Pyridine	C_5H_5N		1.7×10^{-9}	C_5H_5NH	5.9×10^{-6}
Aniline	$C_6H_5NH_2$	С N—H H	3.8×10^{-10}	$C_6H_5 \overset{+}{N}H_3$	2.6×10^{-5}
Caffeine	$C_8 H_{10} N_4 O_2$	$ \begin{array}{c} $	5.3×10^{-14}	$C_8H_{11}N_4O_2$	0.19
Urea	(NH ₂) ₂ CO	O H—N—C—N—H H H	1.5×10^{-14}	H ₂ NCONH ₃	0.67

TABLE 15.4 Ionization Constants of Some Weak Bases and Their Conjugate Acids at 25°C

*The nitrogen atom with the lone pair accounts for each compound's basicity. In the case of urea, K_b can be associated with either nitrogen atom.

Ionization Constants of Conjugate Acid-Base Pairs

$$HA (aq) \rightleftharpoons H^{+} (aq) + A (aq) \qquad K_{a}$$

$$A^{-} (aq) + H_{2}O (l) \rightrightarrows OH^{-} (aq) + HA (aq) \qquad K_{b}$$

$$H_{2}O (l) \rightrightarrows H^{+} (aq) + OH^{-} (aq) \qquad K_{w}$$

$$\boxed{K_{a}K_{b} = K_{w}}$$

Weak Acid and Its Conjugate Base

$$K_a = \frac{K_w}{K_b} \qquad \qquad K_b = \frac{K_w}{K_a}$$

Diprotic and Triprotic Acids

- May yield more than one hydrogen ion per molecule.
- Ionize in a stepwise manner; that is, they lose one proton at a time.
- An ionization constant expression can be written for each ionization stage.
- Consequently, two or more equilibrium constant expressions must often be used to calculate the concentrations of species in the acid solution.

 $\Pi I^{+} I \Pi I \Box \Box \Box \Box^{-1}$

27

$$H_{2}CO_{3}(aq) \rightleftharpoons H^{+}(aq) + HCO_{3}^{-}(aq) \qquad K_{a_{1}} = \frac{[H^{+}][HCO_{3}]}{[H_{2}CO_{3}]}$$
$$HCO_{3}^{-}(aq) \rightleftharpoons H^{+}(aq) + CO_{3}^{2-}(aq) \qquad K_{a_{2}} = \frac{[H^{+}][CO_{3}^{2-}]}{[HCO_{3}^{-}]}$$

TABLE 15.5

Ionization Constants of Some Diprotic Acids and a Polyprotic Acid and Their Conjugate Bases at 25°C

Bases at 2					
Name of Acid	Formula	Structure	Ka	Conjugate Base	K _b
Sulfuric acid	H_2SO_4	О Н—О—S—О—Н И О	very large	HSO_4^-	very small
Hydrogen sulfate ion	HSO_4^-	$\begin{array}{c} O \\ \parallel \\ H-O-S-O^- \\ \parallel \\ O \end{array}$	1.3×10^{-2}	SO_4^{2-}	7.7×10^{-13}
Oxalic acid	$H_2C_2O_4$	О О H—О—С—С—О—Н О О	6.5×10^{-2}	$HC_2O_4^-$	1.5×10^{-13}
Hydrogen oxalate ion	$\mathrm{HC}_{2}\mathrm{O}_{4}^{-}$	$H - O - C - C - O^{-}$	6.1×10^{-5}	$C_2 O_4^{2-}$	1.6×10^{-10}
Sulfurous acid*	H ₂ SO ₃	0 H—O—S—O—H О	1.3×10^{-2}	HSO ₃	7.7×10^{-13}
Hydrogen sulfite ion	HSO_3^-	0 ⊪ H−O−S−O⁻	6.3×10^{-8}	SO_3^{2-}	1.6×10^{-7}
Carbonic acid	H_2CO_3	0 ∥ H—O—С—O—H О	4.2×10^{-7}	HCO ₃	2.4×10^{-8}
Hydrogen carbonate ion	HCO_3^-	H—O—C—O [—]	4.8×10^{-11}	CO_{3}^{2-}	2.1×10^{-4}
Hydrosulfuric acid Hydrogen sulfide ion [†]	H_2S HS^-	H—S—H H—S ⁻	$9.5 imes 10^{-8}$ $1 imes 10^{-19}$	HS ⁻ S ²⁻	1.1×10^{-7} 1×10^{5}
Phosphoric acid	H ₃ PO ₄	О H—О—Р—О—Н О !!	7.5×10^{-3}	$H_2PO_4^-$	1.3×10^{-12}
Dihydrogen phosphate ion	$H_2PO_4^-$	H 0 H-O-P-O ⁻ 0 H	6.2×10^{-8}	HPO_4^{2-}	1.6×10^{-7}
Hydrogen phosphate ion	HPO_4^{2-}	O ∥ H−O−P−O [−] O [−]	4.8×10^{-13}	PO ₄ ³⁻	2.1×10^{-2}

 $^{{}^{8}\}text{H}_{2}\text{SO}_{3}$ has never been isolated and exists in only minute concentration in aqueous solution of SO₂. The K_{a} value here refers to the process SO₂(g) + H₂O(l) \rightleftharpoons H⁺(aq) + HSO₃(aq).

Molecular Structure and Acid Strength

HF << HCl < HBr < HI

TABLE 15.6Bond Enthalpies for Hydrogen Halides and Acid Strengths
for Hydrohalic Acids

Bond	Bond Enthalpy (kJ/mol)	Acid Strength
H—F	568.2	weak
H—Cl	431.9	strong
H—Br	366.1	strong
H—I	298.3	strong

Molecular Structure and Oxoacid Strength

The O-H bond will be more polar and easier to break if:

- Z is very electronegative or
- Z is in a high oxidation state

Molecular Structure and Oxoacid Strength

1. Oxoacids having different central atoms (Z) that **are from the same group** and that have the **same oxidation number**.

Acid strength increases with increasing electronegativity of Z

CI is more electronegative than Br

Molecular Structure and Acid Strength

2. Oxoacids having the same central atom (Z) but different numbers of attached groups.

Acid strength increases as the oxidation number of Z increases.

Acid-Base Properties of Salts

Neutral Solutions:

Salts containing an alkali metal or alkaline earth metal ion (except Be²⁺) **and** the conjugate base of a **strong** acid (*e.g.* Cl⁻, Br⁻, and NO₃⁻).

NaCl (s)
$$\xrightarrow{H_2O}$$
 Na⁺ (aq) + Cl⁻ (aq)

Basic Solutions:

Salts derived from a strong base and a weak acid.

NaCH₃COOH (s)
$$\xrightarrow{H_2O}$$
 Na⁺ (aq) + CH₃COO⁻ (aq)
CH₃COO⁻ (aq) + H₂O (l) $\overrightarrow{}$ CH₃COOH (aq) + OH⁻(aq)

Acid-Base Properties of Salts

Acid Solutions:

Salts derived from a strong acid and a weak base.

$$NH_4CI(s) \xrightarrow{H_2O} NH_4^+(aq) + CI^-(aq)$$
$$NH_4^+(aq) \longrightarrow NH_3(aq) + H^+(aq)$$

Salts with small, highly charged metal cations (*e.g.* AI^{3+} , Cr^{3+} , and Be^{2+}) and the conjugate base of a strong acid.

$$\mathsf{AI}(\mathsf{H}_2\mathsf{O})_6^{3+}(aq) \longrightarrow \mathsf{AI}(\mathsf{OH})(\mathsf{H}_2\mathsf{O})_5^{2+}(aq) + \mathsf{H}^+(aq)$$

Acid Hydrolysis of Al³⁺

Acid-Base Properties of Salts

Solutions in which both the cation and the anion hydrolyze:

- K_b for the anion > K_a for the cation, solution will be basic
- K_b for the anion $< K_a$ for the cation, solution will be acidic
- K_b for the anion $\approx K_a$ for the cation, solution will be neutral

TABLE 15.7Acid-Base Properties of Salts			
Type of Salt	Examples	lons That Undergo Hydrolysis	pH of Solution
Cation from strong base; anion from strong acid	NaCl, KI, KNO ₃ , RbBr, BaCl ₂	None	≈ 7
Cation from strong base; anion from weak acid	CH ₃ COONa, KNO ₂	Anion	> 7
Cation from weak base; anion from strong acid	NH ₄ Cl, NH ₄ NO ₃	Cation	< 7
Cation from weak base; anion from weak acid	NH ₄ NO ₂ , CH ₃ COONH ₄ , NH ₄ CN	Anion and cation	< 7 if $K_{\rm b} < K_{\rm a}$
			\approx 7 if $K_{\rm b} \approx K_{\rm a}$
			> 7 if $K_{\rm b} > K_{\rm a}$
Small, highly charged cation; anion from strong acid	AlCl ₃ , Fe(NO ₃) ₃	Hydrated cation	< 7

Oxides of the Representative Elements In Their Highest Oxidation States

1 1A				Basic o	oxide												18 8A
	2 2A			Acidic	oxide							13 3A	14 4A	15 5A	16 6A	17 7A	
Li ₂ O	BeO			Ampho	oteric ox	ide						B ₂ O ₃	CO ₂	N ₂ O ₅		OF ₂	
Na ₂ O	MgO	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1 B	12 2B	Al ₂ O ₃	SiO ₂	P ₄ O ₁₀	SO3	Cl ₂ O ₇	
K ₂ O	CaO											Ga ₂ O ₃	GeO ₂	As ₂ O ₅	SeO ₃	Br ₂ O ₇	
Rb ₂ O	SrO											In ₂ O ₃	SnO ₂	Sb ₂ O ₅	TeO ₃	I ₂ O ₇	
Cs ₂ O	BaO											Tl ₂ O ₃	PbO ₂	Bi ₂ O ₅	PoO ₃	At ₂ O ₇	

 $Na_{2}O(s) + H_{2}O(l) \longrightarrow 2NaOH(aq)$ $CO_{2}(g) + H_{2}O(l) \longrightarrow H_{2}CO_{3}(aq)$ $N_{2}O_{5}(g) + H_{2}O(l) \longrightarrow 2HNO_{3}(aq)$

39

Definition of An Acid

Arrhenius acid is a substance that produces $H^+(H_3O^+)$ in water

A **Brønsted acid** is a proton donor

A Lewis acid is a substance that can accept a pair of electrons

A **Lewis base** is a substance that can donate a pair of electrons $H^+ + \vdots \bigcirc H^- \longrightarrow H^- \bigcirc -H$ acid base $H^+ + \vdots \bigcirc H^- H \longrightarrow H^- \bigcirc H^+ H^- H^-$

acid base

Lewis Acids and Bases

No protons donated or accepted!

Chemistry In Action: Antacids and the Stomach pH Balance

Some Common Commercial Antacid Preparations

Commercial Name	Active Ingredients	$NaHCO_3(aq) + HCI(aq) \longrightarrow$
Alka-2	Calcium carbonate	NaCI $(aq) + H_2O(l) + CO_2(g)$
Alka-Seltzer	Aspirin, sodium bicarbonate, citric acid	
Bufferin	Aspirin, magnesium carbonate, aluminum glycinate	Food
Buffered aspirin	Aspirin, magnesium carbonate, aluminum hydroxide-glycine	Mucous membran
Milk of magnesia	Magnesium hydroxide	
Rolaids	Dihydroxy aluminum sodium carbonate	Blood plasma
Tums	Calcium carbonate	
		HCl(aq)

To intestines

 $\begin{array}{l} \text{Mg(OH)}_2(s) + 2\text{HCI}(aq) \longrightarrow \\ \\ \text{MgCI}_2(aq) + 2\text{H}_2\text{O}(l) \end{array}$

Cl⁻ H⁺ (active transport)

Blood plasma